Quantification of FRAM models using Coloured Petri Nets

Jan Magott*, Jacek Skorupski** *Wroclaw University of Science and Technology, Wroclaw –Poland-** Warsaw University of Technology, Warsaw –Poland-

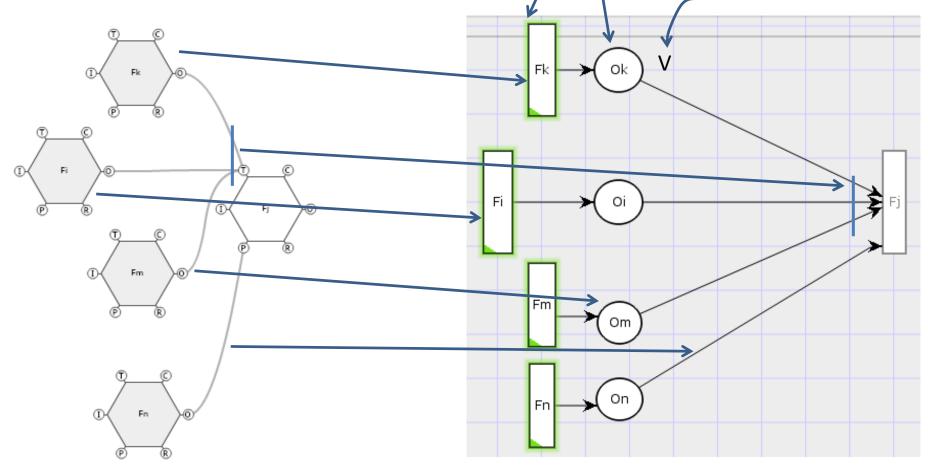
Structure of presentation:

- 0. Problem
- 1. Why Coloured Petri nets?
- 2. FRAM model
- 3. FRAM model example
- 4. CPN of this model
- 5. Summary

0. Problem

How often a variability level of an event can be reached?

1. Why Coloured Petri nets?


Expressive power of Coloured Petri Nets (CPNs):

- System dynamics modelling,
- Interaction between structure components and functions modelling,
- Complicated semantics can be expressed owing to different data types represented by "coloures",
- Resource competition modelling,
- Time features,
- Stochastic processes expressing.

1. Why Coloured Petri nets?

Visual analogies:

- FRAM aspects as CPN places,
- FRAM functions as CPN transitions,
- Variability set of aspects as CPN coloures (data-types).

1. Why Coloured Petri nets?

Software tool: CPN Tools, http://cpntools.org/

Time variability set:

 $V_T = \{On time(OT), Too early(TE), Too late(TL), Not at all(NA)\}$

Time variability probability distribution set

 $VD_T = \{On \ time \ PD(OTPD), Too \ early \ PD(TEPD), Too \ late \ PD(TLPD), Not \ at \ all \ PD(NAPD) \}$

Too early PD(TEPD) denotes probability distribution:

Value	Probability			
On time	0.15			
Too early	0.7			
Too late	0.1			
Not at all	0.05			

[R. Partiarca, G. Di Gravio, F. Costantino, Monte Carlo simulation to assess performance variability in the FRAM, FRAMily 2016]

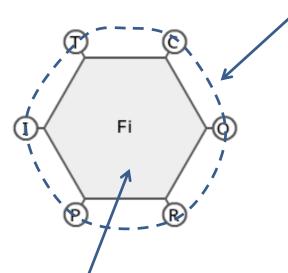
Precision variability set

 $V_P = \{Precise(P), Acceptable(A), Imprecise(I), Wrong(W)\}$ Precision variability probability distribution set

VD_P

= {Precise PD(PPD), Acceptable PD(APD), Imprecise PD(IPD), Wrong PD(WPD)}

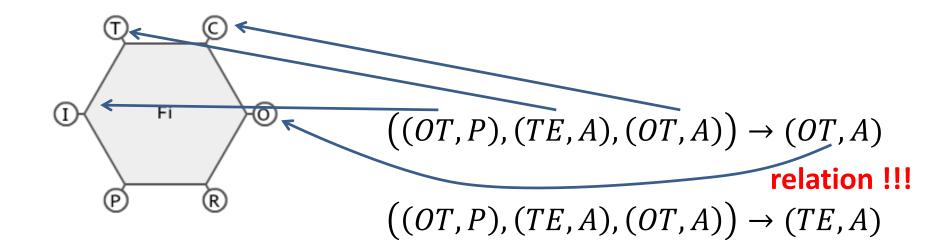
Imprecise PD denotes probability distribution:

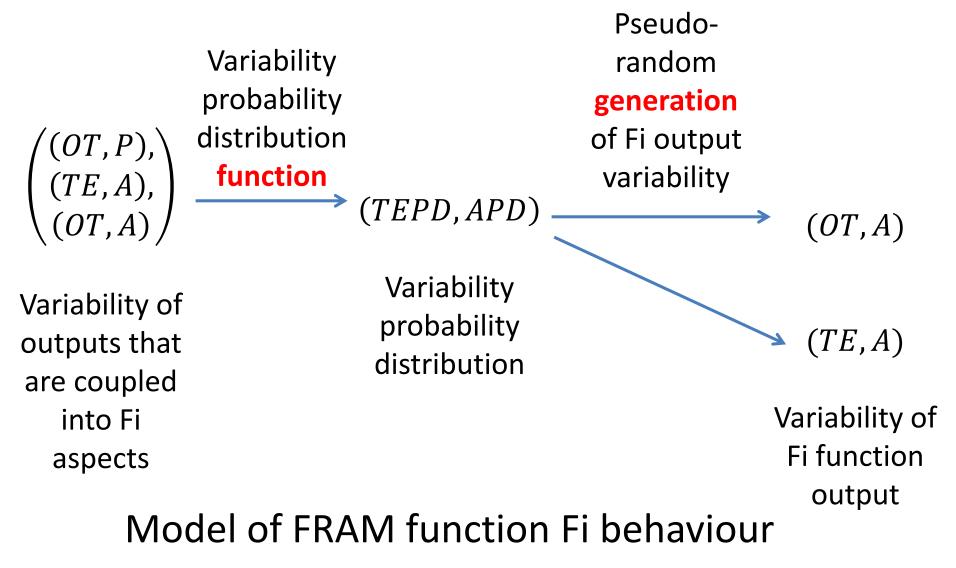

Value	Probability
Precise	0.05
Acceptable	0.2
Imprecise	0.7
Wrong	0.05

[R. Partiarca, G. Di Gravio, F. Costantino, Monte Carlo simulation to assess performance variability in the FRAM, FRAMily 2016]

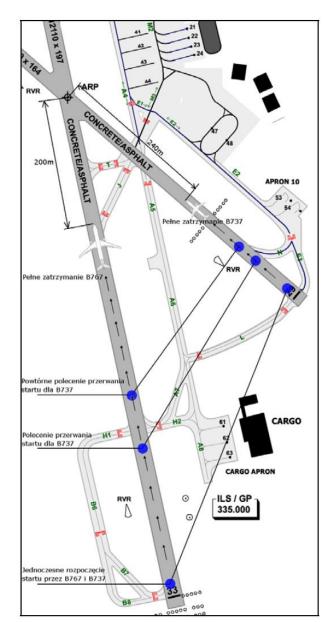
Variability set:

$$V \subset V_T \times V_P$$


Ii, *Ci*, *Ti*, *Pi*, *Ri*, *Oi* − input, control, time, precondition, resource, output aspects of function F_i with variability from the set *V*, (*On time*(*OT*), *Precise*(*P*)), ..., (*Not at all*(*NA*), *Wrong*(*W*)) ∈ *V*



Variability probability distribution set for output variability generation: $(ONPD, APD), \dots, (TEPD, APD) \in VD \subset VD_T \times VD_P$

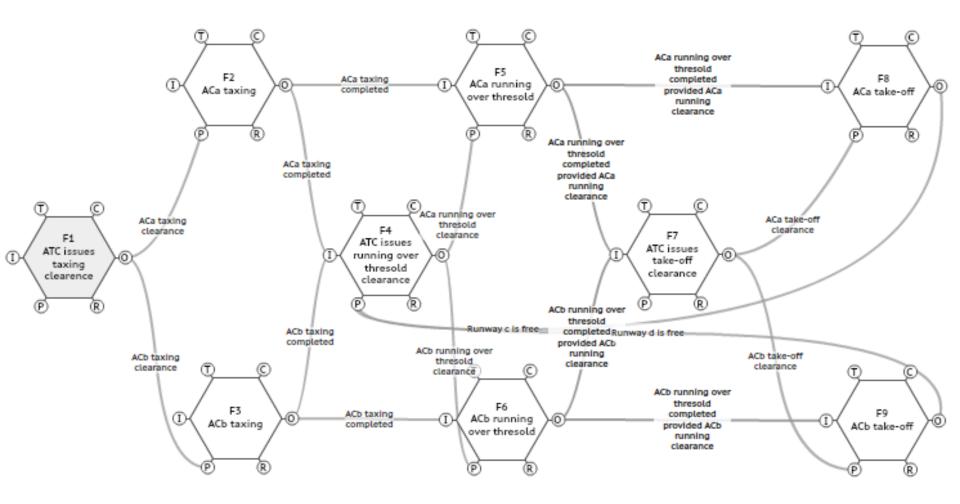

Example

The aspects *Pi*, *Ri* do not influence the variability of function *Fi* output

3. FRAM model example

Phases of aircraft movement during departure:

1. Taxing,


- 2. Running over runway thresold,
- 3. Take-off.

Goal

Comparison of variabilities in the cases without and with the recommendation:

"When there are runway crossings, no more than one aircraft can be waiting for permission to take-off on the runway and, as a general principle, waiting should be on the taxiway before the runway threshold."

3. FRAM model example

ACa taxing	ACb taxing	Runway	Runway	Internal	Internal	ACa running	ACb running
completed	completed	c is free	d is	condition:	condition:	over	over
(O2)	(O3)	(08)	free	runway c	runway d	threshold	threshold
			(09)	is free	is free	clearance	clearance
						(O4)	(O4)
Ρ, Α	NA	NA	NA	$T \rightarrow F$ 4)	Т	APD	NAPD
P,A 1)	P,A						
NA	P,A	NA	NA	Т	$T \to F$	NAPD	APD
All possible combinations 3)		Т	F				
		F	Т	NAPD	NAPD		
				F	F		
I, W	I, W 2)	All possible combinations					
		P,A		$F \to T$			
			P,A		$F \rightarrow T$	NAPD	NAPD
		I,W					
			I,W				

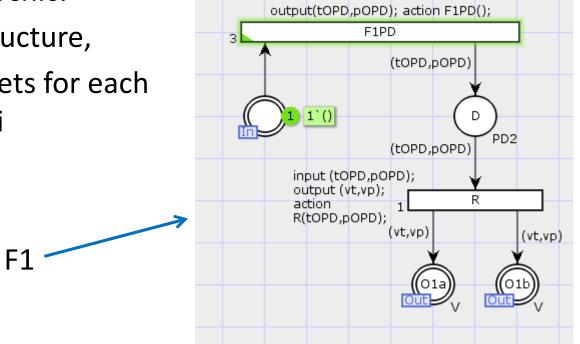
Oi – output of function Fi

P,A,I,W – Precise, Acceptable, Imprecise, Wrong

NA – Not at all

APD – Acceptable Probability Distribution

NAPD – Not at all Probability Distribution


T, F – logical values of the internal conditions

Function F4 output variability probability distribution function table

4. CPN of the FRAM model

Model is hierarchic:

- 1. Overall structure,
- 2. Nine subnets for each function Fi

Summary

- Model of FRAM function behaviour has been proposed Is it correct?
- Variability probability distribution function (table) is complicated
- Generalizations:
 - The other time and precision variability sets,
 - The other time and precision variability probability distribution sets (even one-value distributions),
 - Different variability sets and variability probability distribution sets for different events,