
FMI 28/07/20 1

FRAM Model Interpreter
BasicPlus version

Table of Contents

Background...2
A Model is a Model is a Model … or is it?..4
A FRAM model is a program..5
Variability...6
Purposes of the FMI...8
Principles of interpretation..8
The FMI software..9
Using the FMI software..9

FMI interface...9
FMI Menus..10
Interpretation Profile...11
FMI Session Log...13
A typical FMI session..14

References...14
An Example..15

© Erik Hollnagel, 2020

FMI 28/07/20 2

Introduction

The FRAM Model Interpreter (FMI) is a software tool that can be used to interpret a
FRAM model and through that determine how the described activity or task may develop.
The FMI provides a realisation or simulation of a given model in the sense that it evaluates
the consequences of the couplings specified by the aspects of the model’s functions and
thereby shows how an event can develop. The FMI can therefore be used to determine
how the potential couplings defined in the model will be realised as actual couplings for
specified conditions – an instantiation.

Background

The purpose of the FRAM as a method is to develop a description, represented as a
FRAM model, of the functions that are needed – are used, have been used, or should be
used – to carry out an activity or a task and to make clear how they mutually may depend
on each other (a.k.a. coupling). The development of the model is most easily done by
means of the FRAM Model Visualiser1 (FMV), which is a highly effective software tool or
model editor. The output from the FMV is a graphical rendering of the functions and their
couplings as well as an XML file with the model details.

A FRAM model of a simple activity – making cup noodles – is shown in Figure 1. This
model has relatively few functions with relatively simple couplings. Since the model is
simple enough to be comprehensible from the graphical representation, it is possible to
“reason” or work through it by tracing the relations or connections among functions as
they are shown. Yet even from this simple example it is clear that a FRAM model is
different from a traditional flow model or task analysis description because there are
multiple ways in which functions can be coupled, each of which has a well defined
semantic identified by six different aspects (Input, Output, Precondition, Resource, Time &
Control). The couplings in the model are by definition potential rather than actual and the
lines that connect the functions represent possible dependencies among functions rather
than a pre-defined path or flow of, e.g., control or transfer of information. Any function in
a model can be described in further detail or replaced by several other functions, just as the
boundary of the model can be extended by turning background functions into foreground
functions. While this altogether contributes to making the model more realistic it also
makes it harder and harder to “reason” through it.

Larger FRAM models, such as the one shown in Figure 2, are useful to illustrate the
intricacies of an activity but it is not longer practically possible to go through them by
hand, so to speak. The number of functions and in particular the number of couplings
among functions prevents the kind of walk-through, talk-through analysis that is feasible

1 The FMV is available through this URL: https://functionalresonance.com/the%20fram%20model
%20visualiser/index.html as well as through this http://zerprize.co.nz/FRAM/index.html

© Erik Hollnagel, 2020

https://functionalresonance.com/the%20fram%20model%20visualiser/index.html
https://functionalresonance.com/the%20fram%20model%20visualiser/index.html

FMI 28/07/20 3

for simpler models. The models can still be very valuable for communication, as
sophisticated mind maps, and to indicate possible bottlenecks or critical junctions of an
activity, but they are nearly impossible to analyse in detail. It is to help with this problem
that the FRAM Model Interpreter has been developed.

© Erik Hollnagel, 2020

Figure 1: A FRAM model of a simple activity

Figure 2: A FRAM model for sepsis management (McNab et al., 2018)

FMI 28/07/20 4

A Model is a Model is a Model … or is it?2

Models are ubiquitous in the scientific literature as well as in many other places, for
instance to support a political or financial decision. Most also researchers find it irresistible
to propose models as part of their work. But what is a model actually?

The two examples shown in Figure 3 both represent the main features of what we
tend to call models – a set of components or entities that are connected by lines. The
model components can be enclosed in boxes or other geometrical shapes or they can
simply be names. The components are connected by lines that usually have a direction
indicated by an arrow, sometimes even going in both directions. The components can
represent different categories – for instance “effect” and “planning” in Figure 3 – just as
the connecting lines can be introduced without any clear rules and represent nearly
anything. The connecting lines indeed rarely have a clearly defined meaning (semantics),
and the relation they represent is therefore usually ill-defined. Instead it is tacitly assumed
that the reader or user can infer correctly what the connections are supposed to mean.

A model should, however, be more than a diagram with lines or arrows between
components. The examples shown in Figure 3 are therefore not really models, not even if
the components are given more sophisticated shapes and colours. The general purpose of a
model is to represent a selected set of characteristics, relations or interdependencies of
something, which we can call the target or object system.

“The basic defining characteristics of all models is the representation of some aspects
of the world by a more abstract system. In applying a model, the investigator identifies
objects and relations in the world with some elements and relations in the formal
system.” (Coombs, Dawes, & Tversky, 1970, p. 2)

2 With many apologies to Gertrude Stein.

© Erik Hollnagel, 2020

Figure 3: Two models

FMI 28/07/20 5

A model is thus a deliberate simplification of the features or characteristics of the
target system that are of interest, and the purpose of the simplification – or abstraction –
is to make it easier to investigate issues of interest. The simplification must be systematic
and the model must therefore be based on some sort of formal system that makes it
possible to express or represent the “objects and relations in the world” that are being
investigated. It is not enough to know what you want to study or represent. It is also
necessary to know how to do it, to have a concise way of doing it. The formal system
which provides the basis for a model therefore represents the assumptions about “the
world”, about what lies behind the phenomena being studied or analysed. Without a formal
system, a model in practice becomes meaningless.

A FRAM model is a program

The FRAM does refer to a formal system, namely the four principles (equivalence,
adjustments, emergence, and resonance) that are used to characterise how events can
develop (equivalent to Work-as-Done) and how this may lead to intended as well as
unintended outcomes. More specifically the FRAM – qua method – clearly specifies the
model components and the possible relations. The components must be functions –
something that is done, has been done, or can be done – either as background functions or
foreground functions. And the dependencies must be in terms of one of the six aspects
that are defined for the functions. The relations between functions are represented by the
upstream-downstream couplings. These couplings describe how an Output from one
(upstream) function may serve as an Input / Precondition / Resource / Time / Control of
one or more (downstream) functions. The terms upstream and downstream refer to the
relative order of functions in an instantiation, rather than to any structural features of the
model.

Because of the way that the relations between functions are described, a FRAM model
can actually be seen as a kind of program – as a series of instructions that control the way
in which a model operates or “performs”. Consider, for instance the role of the Input
[Tender noodles] to the function <To remove lid> in Figure 1. This relation can also be
expressed as an instruction or a piece of code in the function <To remove lid> which
might look like this:

IF noodles are tender THEN remove lid
OTHERWISE wait (i.e., do nothing)

Another way of stating this is that the function <To remove lid> will be activated
when the state [Tender noodles] is present. [Tender noodles] is thus both the Output from
the function <To wait until tender> and the Input to the function <To remove lid>. If the
state [Tender noodles] has not yet been achieved then the function <To remove lid> will
remain in a waiting state.

© Erik Hollnagel, 2020

FMI 28/07/20 6

As Figure 1 shows, the Input [Tender noodles] is also used as a Precondition by the
function <To stir carefully>. This function therefore has a Precondition as well as an Input
which both must be present before the function can be activated. The code could in this
case be:

IF (noodles are tender) AND (lid has been removed) THEN stir carefully
OTHERWISE wait

If the Input is present but the Precondition is not then the function will remain
waiting. In this case the function, or rather the FMI, will “remember” that the Input has
been present and wait for the Precondition to become present. Similarly, the function will
also remain waiting if the Precondition is present but the Input is not. In this case the
function, or rather the FMI, will “remember” that the Precondition has been present and
wait for the Input to become present.

The same reasoning can be applied to every foreground function in a model. For the
model in Figure 1, no function needs the presence of more than two aspects to become
activated. For the model in Figure 2, the function <Decide to admit patient> needs five
aspects to be present before it becomes activated, which means that the “code” for the
function is more complicated. Yet the basic principle remains: the way in which the aspects
have been defined in effect constitute a small program or method for each function that
determines when the function becomes activated. Unlike traditional programs and
traditional models, there is no pre-defined sequence in which functions become activated,
hence no pre-defined flow through the model. Instead each function can be seen as
constantly “waiting” for the conditions that allow it to become activated, similar to the
demons in the Pandemonium model (Selfridge, 1958). All that is needed is some kind of
“mechanism” that can keep track of all the functions and carry out or interpret the
conditions that the functions represent. The FMI is such a “mechanism” or interpretation
engine.

Variability

The second of the four principles that provide the foundation for the FRAM is the
principle of approximate adjustments. This principles recognised the fact that people in
practically every situations will adjust what they do to match the situation – the demands,
resources, opportunities, and constraints. Performance variability is inevitable, ubiquitous,
and necessary. The FRAM (and Safety-II) thus changes the focus from the probability of
failures – and “errors” – to the characteristics of performance variability.

In the FRAM method, performance variability is usually described in relation to the
ways in which the Output(s) from a function can vary, with variability in time and precision
as the most important types. This reflects the traditional approach of safety engineering
and human factors to look at the possible forms or varieties (or phenotypes) of outcomes

© Erik Hollnagel, 2020

FMI 28/07/20 7

– as illustrated by techniques such as FMECA and HAZOP to say nothing of the many
taxonomies of “human error”. The variability of the output from a function can
reasonably be assumed to be a result of the variability of the function or the variability of
performance, but when the FRAM was developed it seemed easier to categorise types of
outcomes rather than types of performance. The FMV provides the user with the option
of indicating the potential variability of Outputs, but the interpretation of this is left to the
user.

One of the purposes of the FMI is to provide a way to interpret the variability of the
functions in order to determine the consequences for how an activity develops, the order in
which the functions become activated. Since each function can be seen as a small piece of
code or program, the variability corresponds to whether these programs are executed
rigorously or not. The variability is in this way resides in the function rather than in the
output.3 This is achieved by defining an interpretation profile for each function. The
interpretation profile has a set of parameters that determines how the five different
aspects of a function are treated.

The default assumption is that a function’s method evaluates the aspects as follows:

IF ALL (defined) Inputs are present AND
IF ALL (defined) Preconditions are present AND
IF ALL (defined) Resources are present AND
IF ALL (defined) Times are present AND
IF ALL (defined) Controls are present, THEN the function is activated
OTHERWISE wait

In the FMI, the default interpretation profile for each function is as follows: [Input:
ALL, Precondition: ALL, Resource: ALL, Time: ALL, Control: ALL]. This nominal
condition can be used to show whether the activity can actually be carried out as described
by the model. If that is the case, the use can then begin to change the interpretation
profile for any foreground function. The options for each parameter are:

ALL – meaning that all aspects of the specified type must be present before the
function is activated.
ANY – meaning that just one of the aspects of the specified type must be present
before the function is activated.
NONE – meaning that none of the aspects of the specified type will taken into account
before the function is activated.
(The options of ALL and ANY are, of course, only meaningful if there are two or

more inputs to an aspect of a specified type. They are equivalent if there is only one input.

3 Relative to the FRAM it means that the propagation of variability through the upstream-downstream
couplings is implicit rather than explicit.

© Erik Hollnagel, 2020

FMI 28/07/20 8

If there are no inputs to an aspect of a specified type, the default value ALL will be
equivalent to NONE.)

This can be illustrated by the “making cup noodles” model shown in Figure 1. Here
the function <To stir carefully> will be activated in the nominal condition if both the
Input [Tender noodles] and the Precondition [Lift removed] are present. If, however, the
parameter for Precondition is changed from ALL to NONE, the function will be activated
as soon as the Input is present. (The corresponding setting of the parameters for the
function would be [Input: ALL, Precondition: NONE, Resource: ALL, Time: ALL,
Control: ALL].)

The use of the interpretation profile can be illustrated better by considering a
function with more aspects defined. An example of that is the function <To leave
harbour> shown in Figure 4.

This function has one Input, three Preconditions, one Control, and one Resource. In
the nominal condition, the function will be activated if all defined aspects are present. But
what would happen if some variability was defined for the function? An example could be
this setting: [Input: ALL, Precondition: ANY, Resource: ALL, Time: ALL, Control: ALL].)
In this case the function would be activated when just one of the Preconditions were
present. If that, for instance, was [Moorings have been dropped] then the vessel could
potentially leave the harbour without being trimmed and with the bow doors open. (Any
resemblance to the Herald of Free Enterprise accident is intentional.)

© Erik Hollnagel, 2020

Figure 4: The function <To leave harbour>

FMI 28/07/20 9

Purposes of the FMI

The FMI is a multi-purpose software tool. One purpose of is to check whether the model
is syntactically correct. An important part of that is the detection of orphans that the FMV
has identified.4 Other problems are potential auto-loops where the Output from a function
is used directly by the function itself, or foreground functions where the specification is
incomplete because there is no Input(s) or Output(s).

A second purpose of the FMI is to illustrate the difference between potential and actual
couplings among functions. A FRAM model describes the potential couplings among
functions, i.e., all the possible ways functions can be related according to how the aspects
have been specified. In contrast to that, the actual couplings are the upstream-downstream
relations that are realised when an activity is carried out, which means when the FRAM
model is realised for a set of specified conditions.

A third purpose is to determine whether the activity described by the model in fact will
develop as intended. In a FRAM model each foreground function defines a set of potential
upstream-downstream relations through its aspects. The question is whether these relations
are mutually consistent and whether they in fact will allow an event to develop as intended.
It is all too easy in a complicated model to have functions that mutually depend on or block
(interlock) each other, which in practice may led to conditions where functions wait forever
for an aspect to become fulfilled. The FMI can identify these cases by interpreting the
model step-by-step while keeping track of the status of all the aspects and activation
conditions.

A further purpose is to investigate the consequences of variability of functions. In the
Basic FMI this is done by means of an interpretation profile which specifies the
conditions under which a function may become activated, rather than by considering the
variability of outputs directly.

Principles of interpretation

From a programming perspective, the FMI has been developed as a production system
(sometimes called a production rule system). Production systems were widely used in
artificial intelligence in the 1980s and are defined as follows:

A production system (or production rule system) is a computer program typically used to provide some
form of artificial intelligence, which consists primarily of a set of rules about behaviour but it also
includes the mechanism necessary to follow those rules as the system responds to states of the world.

Leaving the pretensions of AI aside, the FMI is essentially a collection of production
rules. The basic principle is that each function “looks” for the conditions that may activate

4 In the FMV Pro, functions may be grouped and the grouping may “hide” possible orphans, i.e., they are
not visible in the graphical model.

© Erik Hollnagel, 2020

FMI 28/07/20 10

or “trigger” it. These conditions include the Inputs, of course, but also the status of the
aspects that have been defined for a function. If these aspects are present, the function is
activated and the Output is generated. This Output will then be detected by other
(downstream) functions, which then may become activated, and so on. In this way the
activity is propagated through the model according to how the relations between functions
have been specified, i.e., according to the potential couplings defined by the aspects.

Technically speaking, the FMI relies on asynchronous parallel execution of the
functions. (It is, of course, a pseudo parallelism rather than a true parallelism.) The
interpretation is asynchronous because there currently is no practical way to define a
reference “clock time” – let alone real time – for a FRAM model. This means that the
Time aspects only can be used to describe temporal relations between functions, such as
“before”, “after”, or “while”.

The FMI software

The FMI works as a post-processor of FRAM models and is purely text based. The FMI
can read the .xfmv file that is the output from the FMV. It will parse and initialise the
model to make sure that it does not include conditions that make an interpretation
impossible. Once a model has been initialised an interpretation profile can be defined to
control how the interpretation takes place in steps or cycles, one at a time. The stepwise
interpretation makes it possible to follow how functions become activated. The record or
log of an interpretation session can be saved for later in-depth analysis.

Using the FMI software

The FMI is provided as a stand-alone software package that is available for Windows, Mac,
and Linux environments. Details are provided found here:
https://safetysynthesis.com/safetysynthesis%20methods/fram-model-interpreter

FMI interface

When the FMI is started, the user sees the screen shown in Figure 4.
The FMI log pane on the left shows how the interpretation develops step-by-step. This

information is also included in the session log. Above the pane is a field showing the name
and place of the model being interpreted.

Of the two panes to the right, the upper pane shows the status of the functions in the
model after each cycle of the interpretation, which the lower pane shows which Outputs
are present or active after each cycle of the interpretation. This information is also included
in the session log.

© Erik Hollnagel, 2020

https://safetysynthesis.com/safetysynthesis%20methods/fram-model-interpreter

FMI 28/07/20 11

FMI Menus

The File menu provides the following choices:

<Open model file> The user can select which model file to open. Files must be .xfmv.

The Session Log menu provides the following choices:

<Standard> The session log includes the contents of the FMI log pane, the
function status pane and the output value pane for each
interpretation cycle.

<Detailed> In addition to the above, the session log also lists all functions and the
status of their Input, Preconditions Resources Time, and Control
aspects.

<Save log> Used when a session has come to the end to save the log file as a .txt
file. This choice is optional.

The Tools menu provides the following choices:

<Initialise> This will parse the model and initialise it. During the initialisation
the potential couplings among functions will be identified.
The initialisation will also identify the Entry and Exit functions,
loops, and incompletely specified functions.

• An Entry function is a background function from which the
Output is the Input to a foreground function. Since background

© Erik Hollnagel, 2020

Figure 5: The FMI interface

FMI 28/07/20 12

functions cannot be variable, the output will be constant. It
will therefore be present when the interpretation begins, which
means that the downstream function can become active,
provided any other specific conditions are fulfilled (i.e.,
precondition, resource, time or control aspects. This is, of
course, only possible if there is another entry function that can
provide these inputs). To prevent that the entry function
continues to start the model, the Output will be cleared after
the first cycle.

• An Exit function is a background function where the Input
comes from an upstream foreground function. When all Exit
functions have been activated, the interpretation will
automatically be stopped because it is not possible to take it
any further.

• An auto-loop exists when the Output from a function is used by
the same function. Since this means that a function becomes
dependent on its own Output, it can never be activated. A
model that contains auto-loops cannot be interpreted.

• A (foreground) function is incompletely specified if it does not
produce an Output. A model with incompletely specified
functions cannot be interpreted.

<Set profiles> Selection this option will open a pane that allows the user to specify
an interpretation profile for individual functions.

<Begin interpretation> Selecting this option will begin the interpretation.
The interpretation takes place in cycles. In each cycle all functions
will be evaluated as described above and results shown in the FMI
Log, Function status and Outputs active panes, respectively. The
interpretation is continued when the Continue interpretation
button is selected. The interpretation will stop when an EXIT
function has been activated or if no functions were activated during
the cycle.

<Reset FMI> This is used to clear the memory after an interpretation, for
instance to prepare for another model.

Interpretation Profile

An important feature of the FRAM is that functions can be variable, and that this
variability may affect how the event develops – which functions become activated and in
which order – and through that also the outcome.

For the current version of the FMI the variability is specified by means of an
interpretation profile for each function. The initiation of a model will produced a default
profile as described above. If the user selects the <Set profiles> option in the Tools menu,
the following pane will be shown (Figure 6).

© Erik Hollnagel, 2020

FMI 28/07/20 13

The upper part will list all the foreground functions defined in the model. The user
selects a function and then specifies the profile by means of the radio buttons.

<Input> This applies to functions that have two or more Inputs.
ANY means that the function will become READY when at least one
Input is present.
ALL means that the function will become READY only when at all
Inputs are present.

<Preconditions>
<Resources>
<Time>
<Control>

This applies to functions that have two or more aspects of the same
type (P, R, T, or C).
ANY means that the condition represented by the aspect will be
considered fulfilled when at least one os the aspects is present.
ALL means that the condition represented by the aspect will be
considered fulfilled only when all of the aspects are present.
NONE means that the aspect is not considered, even though it has
been specified.

© Erik Hollnagel, 2020

Figure 6: Interpretation Profile selection

FMI 28/07/20 14

The options for an aspect will only be shown if that aspect has been
defined for the function.
WARNING: It is not allowed to select NONE for all four aspects, since
this would reduced the FRAM model to a simple flow model.

<Aspect evaluation> Here the user can indicate whether the function will evaluate all
defined aspects or only some of them, provided the Input(s) is/are
present. Referring to the example in Figure 4, selecting ALL means
that the function will check for the presence of Preconditions,
Resources, and Control. Selection SOME5 means that the function only
will look for some but not all the aspects.

<Save profile> Select this button to save the profile.

After the profile has been saved, the user can repeat the procedure for as many
functions as needed. When this has been done, the interpretation is started by selecting the
Begin interpretation item from the Tools menu.

As an example, you can use the profile to see what will happen if a function no longer
checks whether resources are available (Resources set to NONE) or if only one
precondition rather than all should be considered (Preconditions set to ANY). The
interpretation profile is included in the session log.

FMI Session Log

There are two forms of the Session Log, “Standard” and “Detailed”.
The Standard form provides the status of all Functions and the value of all Outputs

after initialisation (before cycle 0) and then after each cycle as long as the session continues.
The following formats are used.

Each function is described by four items separated by tabs:

Function number The number of the function as provided by the FMV.

Function type The function type can be either FG (a foreground function), BG (a
background function, BG Entry, or BG Exit.

Function name The name of the function as provided by the FMV

Function status The status can be either WAITING, READY, or ACTIVE.

Each Output is described by four items separated by tabs:

Output number The number of the function where the Output has been defined.

Output name The name of the Output as provided by the FMV

Output value If the Output has not been produced during the current cycle, the
value is NIL.

5 In the current version SOME is implemented by a random selection. In the future this may be replaced
by a probability distribution or some other principle.

© Erik Hollnagel, 2020

FMI 28/07/20 15

If the Output has been produced during the current cycle, the value is
the name of the Output.

Output variability Not used in the FMI Basic version

The Detailed form provides the same information as the Standard form but also
includes detailed information about the status of each function after each cycle. The
detailed information is a list of all functions as well as the current value of each aspect
defined for the function, except the Output. The detailed form of the log can be used to
trace how an event develops.

A typical FMI session

In a typical FMI session, the user should proceed through the menus from left to right.
• The first step is to OPEN the model to be analysed.
• The second step is to choose the type of session log. Please note that the choice

cannot be changed after the interpretation has started.
• This is followed by INITIATING the model. A model cannot be interpreted unless it

has been initiated.
• An optional next step is to SET PROFILES, i.e., to specify the interpretation profiles

for individual functions. All functions will initially have the default interpretation
profile.

• The next step is to INTERPRET the model. This will be done in a step-by-step
fashion. After each step the user can choose either to continue the interpretation or to
stop it, based on the current state as presented in the FMI log.

• When the interpretation has come to an end, and optional step is to SAVE SESSION
LOG. The log will be of the type chosen previously.

• A final choice in the Tools menu is to RESET FMI. This can be used when the user
wants to carry out another interpretation with a different interpretation profile, or if
the user for some reason wants to start again. The reset will clear all settings for the
chosen model, but not the FMV model itself. After a reset the user should repeat the
selection of session log type and the initiation of the model.

References

Coombs, C. H., Dawes, R. M., & Tversky, A. (1970). Mathematical psychology. Englewood
Cliffs, NJ: Prentice Hall, Inc

McNab, D., Freestone, J., Black, C., Carson-Stevens, A., & Bowie, P. (2018). Participatory
design of an improvement intervention for the primary care management of possible
sepsis using the Functional Resonance Analysis Method. BMC medicine, 16(1), 174.

© Erik Hollnagel, 2020

FMI 28/07/20 16

Selfridge, O. G. (1958). Pandemonium: a paradigm for learning. In: Mechanism of Thought
Processes. Proceedings of a Symposium Held at the National Physical Laboratory. (p.
513-526.)

© Erik Hollnagel, 2020

FMI 28/07/20 17

An Example

The use of the FMI can be illustrated by the example below. This is the “Prepare cup
noodles” case that often is used in FRAM courses. The FRAM model was shown in Figure
1.

After the model has been Opened and Initialised, the FMI pane looks like this:

The FMI log shows the Entry and the Exit functions will start and end the
interpretation, respectively. The model has three other background functions, but since
their Outputs are not Inputs to downstream functions, they are not identified as Entry
functions.

The function status pane shows the status of the foreground functions. Before the
interpretation begins, all functions are WAITING.

The Active outputs pane shows the Outputs that are active at this time. Although the
interpretation has not started yet, there will be Outputs that are active because they come
from background functions. Here the value is permanently assigned, except for Entry
functions where the value will be set to NIL after the first cycle has been completed.

The interpretation can now be started. It will go through four cycles as shown in the
FMI log below. At the sixth cycle the Exit function is activated and the interpretation
consequently stopped.

© Erik Hollnagel, 2020

Figure 7: Noodles model after initiation in the FMI

FMI 28/07/20 18

In cycle 1, <To add boiling water until fill mark> is activated because the Input has
been provided by the Entry function, and because the required Precondition and Control
aspects have been provided by two background functions.

In cycle 2, <To close and weigh down lid> is activated because the Input has been
provided by the activation of <To add boiling water until fill mark>, and because the
required Resource and Control aspects have been provided by two background functions.

In cycle 3, <To wait until tender> is activated because the Input has been provided by
the activation of <To close and weigh down lid>, and because the required Time aspect
has been provided by the background function <To read instructions>.

In cycle 4, <To remove lid> is activated because the Input has been provided by the
activation of <To wait until tender>. There are no other aspects defined for this function.
Notice that <To stir carefully> is not activated during this cycle even though the Input to
that functions also has been provided by the activation of <To wait until tender>. There is,
however, a Precondition which is the Output from <To remove lid> but the detection of
this Precondition must wait for the next cycle. The function <To stir carefully>
“remembers” that the Input has been provided as long as required. In the FMI all
functions have a “local memory” for the value of their aspects; this “local memory” is
cleared once a function is activated. The contents of the “local memory” is documented in
the Detailed form of the Session Log.

In cycle 5, <To stir carefully> is activated because the Input was provided by the
activation of <To wait until tender> in cycle 2 and because the required Precondition was
provided by the activation of <To remove lid> in cycle 4.

In cycle 6, the Exit function is activated and the interpretation is therefore completed.

© Erik Hollnagel, 2020

	Introduction
	Background
	A Model is a Model is a Model … or is it?
	A FRAM model is a program
	Variability
	Purposes of the FMI
	Principles of interpretation
	The FMI software
	Using the FMI software
	FMI interface
	FMI Menus
	Interpretation Profile
	FMI Session Log
	A typical FMI session

	References
	An Example

